6 research outputs found

    Effect of rotator cuff dysfunction on the initial mechanical stability of cementless glenoid components

    Get PDF
    The functional outcome of shoulder replacement is related to the condition of the rotator cuff. Rotator cuff disease is a common problem in candidates for total shoulder arthroplasty; this study relates the functional status of the rotator cuff to the initial stability of a cementless glenoid implant. A 3D finite element model of a complete scapula was used to quantify the effect of a dysfunctional rotator cuff in terms of bone-implant interface micromotions when the implant is physiologically loaded shortly after surgery. Four rotator cuff conditions (from fully intact to progressively ruptured rotator cuff tendons) as well as two bone qualities were simulated in a model. Micromotions were significantly larger in the worst modeled cuff dysfunction (i.e. the supraspinatus and infraspinatus tendons were fully dysfunctional). Micromotions were also significantly different between conditions with healthy and poor bone quality. The implant's initial stability was hardly influenced by a dysfunctional supraspinatus alone. However, when the infraspinatus was also affected, the glenohumeral joint force was displaced to the component's rim resulting in larger micromotions and instability of the implant

    Prediction of torsional failure in 22 cadaver femora with and without simulated subtrochanteric metastatic defects: a CT scan-based finite element analysis

    Get PDF
    BACKGROUND: In metastatic bone disease, prophylactic fixation of impending long bone fracture is preferred over surgical treatment of a manifest fracture. There are no reliable guidelines for prediction of pathological fracture risk, however. We aimed to determine whether finite element (FE) models constructed from quantitative CT scans could be used for predicting pathological fracture load and location in a cadaver model of metastatic bone disease. MATERIAL AND METHODS: Subject-specific FE models were constructed from quantitative CT scans of 11 pairs of human femora. To simulate a metastatic defect, a transcortical hole was made in the subtrochanteric region in one femur of each pair. All femora were experimentally loaded in torsion until fracture. FE simulations of the experimental set-up were performed and torsional stiffness and strain energy density (SED) distribution were determined. RESULTS: In 15 of the 22 cases, locations of maximal SED fitted with the actual fracture locations. The calculated torsional stiffness of the entire femur combined with a criterion based on the local SED distribution in the FE model predicted 82% of the variance of the experimental torsional failure load. INTERPRETATION: In the future, CT scan-based FE analysis may provide a useful tool for identification of impending pathological fractures requiring prophylactic stabilization

    Some considerations of effects-induced errors in resonant cantilevers with the laser deflection method

    No full text
    Micro/nano resonant cantilevers with a laser deflection readout have been very popular in sensing applications over the past years. Despite the popularity, however, most of the research has been devoted to increasing the sensitivity, and very little attention has been focused on effects-induced errors. Among these effects, the surface effects and the so-called readout back-action are the two most influential causes of errors. In this paper, we investigate (1) the influence of the surface effects such as water adsorption, gas adsorption, and generally surface contaminations, and (2) the effect of the laser deflection detection, including power and positions of the laser, on the resonance frequency of silicon cantilevers. Our results show that both the surface contaminations and the laser back-action effects can significantly change the resonant response of the cantilevers. We conclude that the effects have to be taken into account, particularly in the case of ultra high sensitivity cantilevers.Precision and Microsystems EngineeringMechanical, Maritime and Materials Engineerin
    corecore